

THE NATIONAL AGRICULTURAL NITROUS OXIDE RESEARCH PROGRAM (NANORP)

PETER GRACE

PR.GRACE@QUT.EDU.AU

Queensland University of Technology

Commodity Nitrogen Fertiliser Applied (%) Australia

Federal Dept of Agriculture & Water Resources

- Filling the Research Gap Round 1 NANORP (2012-15)
 - 17 projects
- Filling the Research Gap Round 2 NANORP (2013-16)
 - 6 projects
- Rural Development Corporations (Sugar, Cotton, Dairy, Hort) (2016-21)
 - 10 projects

www.n2o.net.au

Queensland University of Technology

Delivery of practical cost-effective management strategies that

reduce N₂O emissions promote productivity and profitability

in Australian agriculture.

NANORP Core Research Hypothesis

- Nitrogen losses reduced and production increased by:
 - Matching fertiliser N supply with plant N demand
 - Reducing fert N inputs by increasing N supply from SOM/legumes
 - Enhanced Efficiency Fertilisers (EEFs)
 - Better soil structure/drainage

NANORP NUE / N₂O Mitigation Strategies

- <u>N Fertiliser Management</u>
 - o Rate
 - Timing
 - Placement
 - Enhanced Efficiency Fertilisers (EEFs)
 - Polymer coated urea
 - Urease inhibitors
 - Nitrification inhibitors
 - > DMPP
 - > Nitrapyrin
- <u>Rotations</u>

NANORP Research Themes

NANORP – Network Structure

N₂O vs Water Content (WFPS) – Kingaroy (Ferrosol)

Migliorati et al. (2014) NCAE 100

Australian Climatic Zones

N₂O Emissions vs Agricultural Production Zones

Medium

High

No data/uncertain

NANORP – Core (automated) sites (2016-2020)

Nitrogen Use Inefficiency / ¹⁵N Losses

Low

Medium

High

No data/uncertain

Response Curves for DSS/Methodology Development

APSIM

-N management (including rotations) - Grains and sugar

DayCent

- N management Dairy
- EEFs Grains, sugar and dairy

APSIM – Grain Yield - Calibration and Validation¹

APSIM – N₂O Emissions - Calibration and Validation¹

Grains industry: N₂O vs Yield (APSIM)¹

Grains industry: N₂O vs Yield (APSIM)¹ Wet vs Dry year

Sugar industry: EEFs & Fallow vs N₂O & Yield (DayCent)¹

¹Migliorati et al. (2023) AEE 306.

Grains industry: EEFs vs N₂O (DayCent)¹

Measured (daily means) and simulated daily N_2O fluxes wheat-maize (a-d) and sorghum (e-h) seasons at Kingaroy, Queensland, Australia.

¹Migliorati et al. (2015) AEE 213.

Dairy industry: EEFs vs N₂O (DayCent)¹

¹Migliorati et al. (unpublished)

APSIM – Gaseous Diffusion¹

Outputs

- 66 multiple datasets in n2o.net.au
- 50+ journal papers (including 20 additional papers in special issue of Soil Research)
- 76 Conference proceedings
- 37 Fact sheets
- 58 Field days